

LA-UR-21-32055

Approved for public release; distribution is unlimited.

Title: ASTM D03 Workshop: Developing a Hydrogen Contamination Detector

Analyzer

Author(s): Rockward, Tommy

Brosha, Eric Lanich Maurya, Sandipkumar Mukundan, Rangachary Wilson, Mahlon Scott

Intended for: Workshop: ASTM

Issued: 2021-12-09

ASTM D03 Workshop: Developing a Hydrogen Contamination Detector Analyzer

Team(alphabetically):

E. Brosha, S. Maurya, R. Mukundan, T. Rockward C. Romero, and M. Wilson

Dec 8, 2021

"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

HCD Background

Problem:

Non-hydrogen constituents in the fuel steam can cause irreversible damage to FC systems and therefore should be avoided.

Objectives:

1. Develop a low-cost fast response device (analyzer) to measure impurities in a dry hydrogen fuel stream at or above the SAE J2719 levels.

Analyzer Targets:

SAE J2719 Limit	Filling Time
200 ppb CO	~ 5 min

- 2. Develop understanding of working mechanism and improve analyzer by identifying the best materials and their configuration (Timeline of improvements)
- 3. Test the analyzer in real-world environments

Approach

- Use a mini fuel cell in/at the hydrogen stream to detect impurities that can be harmful to the fuel cell stack
- No oxygen or water available at the filling station, challenges:
 - 1. Provide hydration via a *Wicking Scheme (Offline Analysis)*
 - 2. Operate w/o H₂0 inside fuel stream at High P & low T (*Inline Analysis*)
- ➤ HCD operates as an electrochemical H₂ pump² using a MEA-type configuration. Measure pumping current before, during and after contaminant exposure. (No Oxygen required.)

Identifying & Testing Desirable Materials (FY15)

Proof-of-Concept Shown

Reference Electrode: Tolerant and Stable

- Pt: 30 wt %, Ru: 23.3 wt %, High surface area to mass ratio 3.5nm particle size
- Carbon black with 5% Nafion® painted decals

Working Electrode: Durable and Sensitive

Sputtered low loaded electrode provides stable Pt particle sizes and high sensitivity to impurities.

Desired response times obtained for both CO and H₂S at the SAE level!

Response time < 5 minutes!!!

Developing the Prototype(FY16)

- Membrane Hydration Challenging: Identifying conditions needed for constant membrane humidification
 - Confirm by measuring HFR w/varying flow and membrane thickness
- Determine a fuel flow-rate that will not compromise sensitivity or response time

Membrane Saturated

N212, HFR increases in the presence dry gas flow

N117 maintains hydration longer

UNCLASSIFIED

Re-designed hydration scheme

Prototype Developed (FY16)

- > Newly designed prototype developed using standard FC hardware
- > IP protection initiated for membrane hydration system

Improved Humidification (FY17)

0.039 mg Pt/cm²; Low Pt, 0.2 mg Pt/Ru (RE) T: 30°C, P: 0 psig, Flowrate: 100 sccm

- Baseline experiments
- Gases were externally humidified
- 25 BC GDL
- > CO exposure shows clear response

- Dry gases with wicking humidification system
- GDL changed to a less hydrophobic material
- More stable than 'Baseline'
- Responds to 200 and 500 ppb CO

No natural recovery observed !!!

Applying a Clean-Up Strategy (FY17)

How to reset the analyzer?

- Applied 0.75V as a 'Clean-Up' Method
- Analyzer reset after 200 ppb CO
- > Recovery not complete at highest concentrations

Imp Spectras for Varying CO Concentrations: 10 min at 0.1 V, lonomer Impact

Temp: 30°C, Flowrate: 100 sccm,

:IED

.Z (ohm)

Proposed Operating Mode Demonstrated (FY18) 200 sccm H₂

Ave. Response Time:

500ppb CO: 3.48 min

50ppm CO: 1.5 min

- •Apply periodic cleanup voltages (1.5V for 30s) and measure current during 15 minute recovery intervals. (Current kept in operating window)
- •Alarm trigger level can be set (e.g. 20 mA).
- Analyzer current loss tracks with CO concentration.

- Higher H₂ flow rate demonstrated using identical clean-up strategy.
- Response time< 5 min (goal).
- Total current loss similar for 100(not shown) and 200 sccm flow rates

Proposed Operating Mode Demonstrated (FY18) SAE 2719 Level

Ave Response Time: 6.9 min

Adjusted Trigger Level

Ave Response Time: 2.5 min

- Sensitivity to 200ppb CO demonstrated.
- Analyzer response time > 5 min. (goal not met)
- Adjusting trigger level allows 200ppb CO to alert in 2.5 min.

Testing in Real-World Conditions (FY19)

- Operation in the field may presents challenges not captured with laboratory testing. For example,
 - Sensitivity in the field
 - Maintaining stability
 - Analyzer cell lifetime
 - Durability issues
 - Local temp swings

Analyzer set-up for testing in the field

Field Trials (FY19)

- Operating mode: 0.1V hold with periodic cleaning pulse applied, 1.5V. (left graph)
- Data shown without pulses (right graph):
 - 1. Research grade (RG) H₂ sampled until reformer began.
 - 2. CO present during reformer start-up evident by sharp current decay.
 - 3. Performance recovers after returning to RG H₂
 - 4. Current increases as product gas becomes cleaner.

Impact of Ambient Temp (FY19)

stable baseline.

odifications made to mitigate

Modifications made to mitigate impact of local temp:

- 1. Insulation applied to exterior manifold and supply gas lines.
- 2. Internal sample loop installed to allow sample gas temp more time to equilibrate.

Gas sample loop

UNCLASSIFIED

baseline stability

Field Results (FY19): SAE/ISO CO Level

- New enclosure for HCD testing equipment
- Certified 200ppb bottles of CO/H₂ mixtures are not commercially available.
- A low pressure bottle (<25psi) of test gas was prepared using a NIST traceable standard.
- Raw data(left) plot shows measured current value (0.1V polarization) with clean-up voltage (1.5V) and without on the right.

- HCD successfully detected 200ppb CO outside of laboratory conditions.
- A large current loss is observed when 200ppb CO is injected into the H2F hydrogen stream.

New HCD and Components for Low-Cost System

- Present retail cost, not including labor, recently estimated to be \$3215/system.
- Compare to previous system field-tested at Burbank H2F which cost \$22,500 not including the cost of the required refrigerated instrument cabinet.
- ✓ Machined Ti HCD plates: \$400/set
- ✓ Membrane/GDLs/GDE WE/CE: ~ \$50ea
- ✓ Peltier thermal module: \$175
- ✓ Peltier controller: \$750
- ✓ Machined Al adapter plate: ~ \$240ea
- √VI Controls HCD controller: \$1500ea
- ✓ Misc: ~\$100/unit
- Relay and MOSFET added for external control of H2Frontier E-stop system to shut down H₂ delivery to storage if CO rises above 200 ppb from methane reformer system. Arduino based system

Gen 2: Peltier thermal module controls temperature for flexible deployment

Gen 1 Field test at Burbank: HCD and Gamry unit were placed inside refrigerated enclosure already onsite.

Validation and Verification Testing HCD

- HCD test results provided by Skyre reproduce the performance characteristics and testing results obtained at LANL and at the H2Frontier hydrogen fueling station.
- Low cost (Gen2) HCD performance comparable to Gen1

Results from Skyre (CRADA final report)

Figure 6. Evaluation of 2^{nd} Gen HCD functionality – CA sensing-cleaning cycles for the verification of contamination-recovery in 2.0, 1.0, 0.4 & 0.2 ppm CO in H_2

2nd Gen HCD performance in 0.2, 0.4,1.0, and 2.0 ppm CO

Figure 5. First-Generation HCD's contamination-recovery in 0.2 PPM CO in Zero H₂

1st Gen HCD performance in 200ppb CO

Contaminant Concentration vs. HCD test parameters	Zero-Grade H₂	2 ppm CO in H ₂	1 ppm CO in H ₂	0.4 ppm CO in H ₂	0.2 ppm CO in H ₂
Baseline Current (mA)	30	30	25	28	28
Current Upon Contamination (mA)	N/A	12	12	20	22
% of Contamination	0%	60%	52%	29%	21%
Recovery of Baseline	Yes	Yes	Yes	Yes	Yes
Cell Resistance (Ohm)	1.2-1.3	1.5-1.7	1.3-1.5	1.5-1.7	1.4-1.7

Table 1. 1st Gen HCD evaluation parameters for different CO-concentration in Zero-grade H_2 gas

1st Gen HCD performance in 0.2, 0.4,1.0, and 2.0 ppm CO

Developing an Inline HCD

Approach

Replace Nafion® with a proton-conducting thermoplastic membrane that will not require water to function.

Polybenzimidazole (PBI) based HCD work

PBI membranes prepared by LANL researchers with 5, 10, and 15% H₃PO₄.

Same HCD hardware used but humidification scheme not used.

Excess H₃PO₄ applied to GDE/GDL before assembly.

UNCLASSIFIED

Same sputtered, low-Pt loaded GDL used / PtRu CE. With or without ionomer.

HCD: Initial PBI Results

- Use identical operating mode
- Current response to higher concentration CO similar to Nafion® HCD.
- Impedance spectra: an increase in charge transfer resistance is indicative of catalyst poisoning (i.e. CO adsorption)
- No response to CO at the SAE level
- Cell conditioning different from Nafion[®] based HCD.

PBI-based HCD Flowrate Impact:

- No water reservoir
- Flow independent baseline current
- Initial performance lower

PBI-based HCD operated in completely water-free, dry H₂ stream. The current response remained constant even after a 5X increase in flowrate.

PBI HCD: Sensitivity Tuning

- Test conditions: 30°C, ambient pressure, 500sccm flowrate, identical reference electrodes
- Previous Slide: Pumping Current: ~0.0045 A (Ultra-low Pt loadings with 10M H₂PO₄)
- Modified [H₂PO₄] and Pt loading
- Left graph: Varying local [H₂PO₄] significantly changes membrane conductivity (HFR).
- ➤ Right graph: Pumping Current is influenced by both [H₂PO₄] and Pt loading

Successfully varied the HCD pumping current!!!

Summary

- > HCD improved in several iterations
 - Component modification to stabilize membrane hydration
 - Ionomer content varied for baseline stability and improved conditioning
 - Clean up strategy implemented to reset analyzer
- Sensitivity to 200ppb CO in dry H₂ has been demonstrated
- Patent filed for technology
- > Field trials location identified, system installed and tested
- ➤ Less expensive Gen 2 electronics development after proven field trials testing
- ➤ Inline HCD(PBI-based) shows promise but has challenges with sensitivity

Acknowledgements

- Our funding source:
 - Laura Hill (Technology Manager, DOE HFTO)
- Collaborators:
 - -H2Frontier (Burbank, CA)
 - SKYRE (Formerly Sustainable Innovations)
 - -NREL, Bill Buttner
 - VI Control Systems of Los Alamos
- And the Audience!!!

Thank you

